
 1 

 
 
 

 
 
 
 
 

ESCS schedule structure 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 Name Date Signature 

Authors 
Righini S (IRA) 
Orlati A (IRA) 
Bartolini M (IRA) 

02/02/15  

 
 
 
  



 2 

 
 
 
 
	
  

DOCUMENT CHANGE RECORD 

Issue No. Issue 
date 

No. of 
pages 

Pages 
changed, 

added, 
deleted 

Description of change 

01 02/02/15 13 - Issue 01 

02 12/08/15 12 - 

**Issue aligned to ESCS 0.5** 
Addition of spectroscopy-related features.  

Overall rearrangement of contents. 
MBFITS-related info temporarily removed as  

this output format is not yet implemented. 
 
 
 
 
 
 
 
 
 
 

1	
   INTRODUCTION	
  ...................................................................................................................................................	
  3	
  
2	
   SCANS	
  VS	
  SUBSCANS	
  ...........................................................................................................................................	
  3	
  
3	
   SCHEDULE	
  FILES	
  ...................................................................................................................................................	
  4	
  

3.1	
   SCD	
  FILE	
  ...............................................................................................................................................................	
  4	
  
3.2	
   LIS	
  FILE	
  .................................................................................................................................................................	
  6	
  

3.2.1	
   SIDEREAL	
  subscans	
  .....................................................................................................................................	
  6	
  
3.2.2	
   OTF	
  subscans	
  ..............................................................................................................................................	
  7	
  
3.2.3	
   OTFC	
  subscans	
  ............................................................................................................................................	
  8	
  
3.2.4	
   SKYDIP	
  subscans	
  .........................................................................................................................................	
  9	
  

3.3	
   CFG	
  FILE	
  ............................................................................................................................................................	
  10	
  
3.4	
   BCK	
  FILE	
  ............................................................................................................................................................	
  11	
  
3.5	
   SPECTRAL	
  LINE	
  OBSERVATIONS	
  ................................................................................................................................	
  12	
  

 
  



 3 

1 Introduction 
 
A schedule is a set of files where all the geometry/timing/frequency details of a sequence of data 
acquisitions are specified, according to a syntax that enables ESCS to read and execute them.  
In order to generate the schedules, for the most common observing modes in continuum and spectroscopy, 
a tool called ScheduleCreator is available (see dedicated documentation).   
 
For regular observations, users should not edit the schedule files: for most of the applications, they can 
totally ignore what is written inside them. Only expert users, wanting to customize their observations in 
unusual or complex ways, should access the schedules and edit them, or create schedules from scratch 
using their own tools. 
For this purpose, the following sections describe the general scheme conceived for the observations and 
the content of the files composing the schedule.  
 
 
2 Scans vs subscans 

  
We define the scans and subscans composing the observing session as follows: 
 

Scan 
It is the lowest level object normally used by an observer. It is a sequence of one or more subscans 
that share a single goal: for instance cross-scans and maps involve a pattern of subscans. Whether 
OTF maps mosaicing observations are considered a single scan or a series of scans is rather a 
matter of how the user would like to define it. In our implementation each map is considered a scan.  
 
Subscan 
it is the minimal amount of data acquisition that can be commanded at the script language level. It is 
highly desirable that it is a simple enough element. For example, it is the single OTF “line” of a map 
or of a cross-scan. 

 
The figure below visually represents what cross-scans, OTF maps and raster maps are.  
 

 
 
In the case of cross-scan, a subscan is a single arrow (a line across the target), four arrows – i.e. two full 
crosses – constitute the schema which might be repeated as many times as needed within the scan.  
For OTF maps, the subscan is again the single arrow, and the scan coincides with the whole map obtained 
with lines along one axis only (e.g. along RA or Dec). For raster maps, which are based on discrete 
acquisitions, each point is a subscan, and the final map constitutes the scan.  
 
When choosing FITS as the data output format, a distinct FITS file is produced for each subscan listed 
in the schedule. Details on the file production are given in the next section, where the .scd component of 
the schedule is described. 
 
  



 4 

3 Schedule files 
 
The present release of the system requires 4 files: 
 

• .scd file: it holds the sequence of scans/subscans to be performed, including some setup 
parameters which can be either assigned to the whole schedule or to individual subscans 
 

• .lis file: it lists the spatial configuration of the single subscans composing the observation; it 
also contains the target details in case of scpectral observations (target radial velocity, etc…) 

 
• .cfg file: it contains the frontend configuration and other procedures to be used in the 

initialization phase (if any) and in the pre-scan/post-scan operations (if any). Any ESCS 
command can be inserted in these procedures. Users are warned, however, that their 
employment might not be necessarily useful: pay attention to the meaningfulness of their 
insertion within the schedules  
 

• .bck file: it is devoted to the backend setup 
 

 
 
3.1 SCD file 
 
This is the main schedule file, sequentially listing the scans/subscans to be executed.  
Values are all TAB-separated.  
The header must contain the following keywords, including the final colon:  

 
PROJECT:  user-defined label for the project. It will end up in the output filename.  
OBSERVER:  name of the observer. It will end up in one FITS file header.  
SCANLIST:  name of the LIS file to be used.   
PROCEDURELIST: name of the CFG file to be used.   
BACKENDLIST: name of the BCK file to be used.   
MODE:   schedule mode: SEQ for sequential schedules, LST for time-based  
   schedules. If SEQ, then a tab-separated start LST time can be specified as  

HH:MM:SS. If LST, then a tab-separated value can indicate how many 
times the schedule must be run 

[SCANTAG:  number for the initial scan, optional, default is 1] 
[INITPROC:  name of the initialization procedure (contained in the CFG file), optional] 

 
 
Then, the scans/subscans are listed. 
Each scan is introduced by a line starting with “SC:” followed by some scan-level information:  
 
SC: Scan# ScanLabel BCKProcedure:WriterName [ScanLayoutName] 
 

Scan#   is the number for the scan. It must be unique in the schedule. Scan numbers must  
  be incremental but do not need to be sequential.  
ScanLabel will be included in the output filename.   
BCKProcedure is the name of a valid procedure listed in the BCK file.  
WriterName is the name of the output data writer (MANAGEMENT/FitsZilla or  
  MANAGEMENT/MBFitsWriter). 
ScanLayoutName is the name of the layout selected from the DAT file. It should be omitted, as it is  
  useless, when FITS files are chosen for data output.  

 
 
  



 5 

After the scan setup, all the subscans composing that scan are specified, like: 
 
Scan#_subscan# Duration SubscanID PreProcedure PostProcedure 
 

Scan#_subscan# is the sequential number for the subscan, e.g. 1_1, 1_2, etc…  
Duration   is the subscan duration (seconds). For OTF subscans it must coincide with  
   the duration declared in the LIS file 
SubscanID   is the ID for the subscan to be executed, as reported in the LIS file 
PreProcedure   is the name of the procedure, enclosed in the CFG file, to be performed in  
   the POST-subscan phase. Parameters can be passed as name=value. 
PostProcedure   is the name of the procedure, present in the CFG file, to be performed in 

he post-subscan phase. Parameters can be passed as name=value.  
 
In case of a sequential schedule, scans/subscans are not associated to specific execution times, so they 
are carried out sequentially following an “as soon as possible” approach.  
Here follows an example of sequential schedule where the chosen output file format is FITS.  
 

PROJECT: Test3c295 
OBSERVER: John Doe 
SCANLIST: Test3c295.lis 
PROCEDURELIST: Test3c295.cfg 
BACKENDLIST: Test3c295.bck 
MODE: SEQ 
INITPROC: INIT 
 
SC: 1 3c295 300_40:MANAGEMENT/FitsZilla 
1_1 0.0 1 NULL POSTTSYS 
1_2 14.0 5 NULL POST 
1_3 14.0 6 NULL POST 
1_4 14.0 7 NULL POST 
1_5 14.0 8 NULL PROC_WAIT=1 
 
SC: 2 3c295 730_20:MANAGEMENT/FitsZilla 
2_1 0.0 1 NULL POSTTSYS 
2_2 14.0 5 NULL POST 
2_3 14.0 6 NULL POST 
2_4 14.0 7 NULL POST 
2_5 14.0 8 NULL PROC_WAIT=1 

 
Please notice that sequential schedules run ad libitum, as long as the targets are above the horizon and 
the user does not input a stopSchedule command.  
 
It is possible to write sidereal-time-based schedules, assigning the ‘LST’ value to the header keyword 
‘MODE’, followed by the number of repetitions foreseen for the schedule (1 means that, when the schedule 
has completed one run, it stops). It is then necessary to add a column to the SCD file, where the LST start 
times for the individual subscans are provided. This feature is not included in the present release of the 
schedulecreator, so this schedule version can be obtained only editing a sequential schedule, or 
using custom tools.  
 
The single subscan line then becomes: 
 
Scan#_subscan# StartLST Duration SubscanID PreProcedure PostProcedure 
 
 
 
 
 
 
  



 6 

Here is an example of time-based schedule: 
 

PROJECT: Test3c295 
OBSERVER: John Doe 
SCANLIST: Test3c295.lis 
PROCEDURELIST: Test3c295.cfg 
BACKENDLIST: Test3c295.bck 
MODE: LST 1 
INITPROC: INIT 
 
SC: 1 3c295 300_40:MANAGEMENT/FitsZilla 
1_1 12:23:35.0 0.0 1 NULL POSTTSYS 
1_2 12:23:40.0 14.0 5 NULL POST 
1_3 12:24:00.0 14.0 6 NULL POST 
1_4 12:24:20.0 14.0 7 NULL POST 
1_5 12:24:40.0 14.0 8 NULL POST 

 
             SC: 2 3c295 730_20:MANAGEMENT/FitsZilla 

2_1 12:26:55.0 0.0 1 NULL POSTTSYS 
2_2 12:27:00.0 14.0 5 NULL POST 
2_3 12:27:20.0 14.0 6 NULL POST 
2_4 12:27:40.0 14.0 7 NULL POST 
2_5 12:28:00.0 14.0 8 NULL POST 

 
 
3.2 LIS file 
 
This file lists all the spatial subscan configurations employed within the schedule, one for each line. They 
do not need to follow the execution sequence in which they are called by the SCD schedule: the first 
column gives a unique incremental ID (not necessarily sequential: gaps are allowed) to be included in the 
calls inside the SCD file. Fields are TAB-separated. 
 

# 3C295 
1 SIDEREAL TSys EQ 212.8360d 52.2025d 2000.0 -EQOFFS 0.0d -0.35d 
2 SIDEREAL TSys EQ 212.8360d 52.2025d 2000.0 -EQOFFS 0.0d 0.35d 
3 SIDEREAL MySource GAL 200.3232d 45.1221d -GALOFFS  0.0d 0.0d 
4 SIDEREAL OffSource GAL 200.3232d 45.1221d -GALOFFS  -1.0d 0.0d  
5 OTF  3c295 212.8360d 52.2025d 0.0d 0.7d EQ EQ LON CEN INC 14.0 -EQOFFS 0.0d 0.0d 
6 OTF  3c295 212.8360d 52.2025d 0.0d 0.7d EQ EQ LON CEN DEC 14.0 -EQOFFS 0.0d 0.0d 
7 OTF  3c295 212.8360d 52.2025d 0.7d 0.0d EQ EQ LAT CEN INC 14.0 -EQOFFS 0.0d 0.0d 
8 OTF  3c295 212.8360d 52.2025d 0.7d 0.0d EQ EQ LAT CEN DEC 14.0 -EQOFFS 0.0d 0.0d 
 

 
 
Different subscan types can be used: SIDEREAL, OTF, OTFC and SKYDIP.  
 
3.2.1 SIDEREAL subscans  
They are used for tracking and on-off acquisitions:  the antenna points to the specified position.  
The LIS line is composed by: 
 

ID = unique ID for the subscan configuration 
TYPE = subscan type label, in this case ‘SIDEREAL’ 
TARGET = label for subscan target/content 
FRAME = frame for the coordinates to follow. Options: ‘EQ’, ‘HOR’ or ‘GAL’ 
LONGITUDE = target longitude, following the generally allowed longitude formats 
LATITUDE = target latitude, following the generally allowed latitude formats 
EPOCH = for EQ coordinates only. ‘-1’ means the coordinates are precessed to date.  
OFFSET LABEL = [opt] frame for the offsets to follow. Options: ‘-EQOFFS’, ‘-HOROFFS’ or  
                              ‘-GALOFFS’ 
LON OFFSET = [opt] longitude offset (degrees, with ‘d’ suffix) 
LAT OFFSET = [opt] latitude offset (degrees, with ‘d’ suffix) 

  



 7 

 
àNotice: the offsets frame can be freely chosen, regardless of the frame describing the target 
coordinates. These offsets sum up to the overall offsets that might have been defined by the 
users with the radecOffsets, azelOffsets and lonlatOffsets commands. By default, subscan-level 
offsets are zeroed any time a new subscan is commanded, and new offsets (if any is 
specified in the LIS line) take over. 

 
Though the definition SIDEREAL clearly implies the tracking of a celestial source, a “degenerate” use of 
this subscan type is given by beam-parking observations: when users want to acquire data in a fixed Az,El 
position, they can use SIDEREAL subscans where the coordinate frame is ‘HOR’. Please notice that, 
though this observing mode implies no antenna motion, it fully corresponds to the execution of a schedule 
with scans/subscans as concerns data acquisition, so the mount must be in tracking mode (and not in 
preset mode) in order to perform this kind of observation. 
 
 
3.2.2 OTF subscans 
On-the-fly subscans are paths on the sky run at constant speed while acquiring data.  
 
The LIS line is composed by: 

ID = subscan unique ID  
TYPE =  subscan type, in this case ‘OTF’  
TARGET = label for target 
LON1 = for DESCR=’SS’ (later keyword), longitude (*) of the scan starting point.  
             For DESCR=’CEN’, longitude (*) of the subscan central point. 
LAT1 = for DESCR=’SS’ (later keyword), latitude (!) of the scan starting point. for DESCR=’CEN’,  
 latitude (!) of the subscan central point. 
LON2 = for DESCR=’SS’ (later keyword), longitude (*) of the subscan ending point. for  
 DESCR=’CEN’, whole longitude span (*) of the subscan. 
LAT2 = for DESCR=’SS’ (later keyword), latitude (!) of the subscan ending point. for     
             DESCR=’CEN’, whole latitude span (!) of the subscan. 
FRAME = coordinate frame relative to the previously specified lon-lat coordinates:  

‘EQ’ = Equatorial J2000.0 (longitude = RA, latitude = Dec)  
‘HOR’ = Horizontal (longitude = azimuth, latitude = elevation)  
‘GAL’ = Galactic (longitude = l, latitude = b) 

sFRAME = coordinate frame along which the scan is performed. It must be equal to FRAME, apart 
from a single case: if FRAME is ‘EQ’ and the scan description is ‘CEN’ (see next 
keywords), then sFRAME can also be ‘HOR’, which means that Az-El scans will be 
performed across a sidereal position. This is usually exploited for pointing calibration 
campaigns. 

GEOM = scan geometry:  
LON = constant longitude 
LAT = constant latitude  
GC = great circle arc (only for DESCR=’SS’) 

DESCR = scan description:  
SS = start and stop positions 
CEN = center position + scan span 

DIR = scan direction (ignored if GEOM=’CG’):  
INC = the varying coordinate increases  
DEC = the varying coordinate decreases 

DURATION = scan actual duration in seconds (acceleration/deceleration ramps excluded) 
offFRAME = [opt] frame for the user-defined offsets to be added to the lon-lat coordinates specified  
 (the leading dash ‘ –‘ is compulsory): 

  -EQOFFS = Equatorial  
  -HOROFFS = Horizontal    
  -GALOFFS = Galactic  
At present offFRAME must be equal to sFRAME, which means that it is not possible to 
perform scans in an exotic way like scanning along the galactic longitude while applying 
equatorial offsets, etc... but it is possible to apply Az,El offsets to Az,El scans across a 
sidereal (equatorial) position. 



 8 

LONOFF = [opt] longitude offset, in degrees, which can be specified as dd.dd’d’ (decimal format, 
can be positive or negative, notice the ‘d’ suffix) or dd:mm:ss.s. It is meant to be “on sky”, 
i.e. the actual span, in practice ∆lon x cos(lat). 

LATOFF = [opt] longitude offset, in decimal degrees (notice the ‘d’ suffix). 
 

àNotice: these offsets sum up to the overall offsets that might have been defined by the 
users with the radecOffsets, azelOffsets and lonlatOffsets commands. By default, subscan-
level offsets are zeroed any time a new subscan is commanded, and new offsets (if any is 
specified in the LIS line) take over. 

 
Examples of valid OTF subscans: 
 

1      OTF Source1 310.256d 30.231d 310.256d 30.931d EQ EQ LON SS INC 14.0 
2      OTF Source1 310.256d 30.231d 0.0d 0.7d EQ EQ LON CEN INC            14.0  
3      OTF Source2 12:45:12h 18:12:21.1 0.7d 0.0d EQ HOR LAT CEN INC 14.0 -HOROFFS   -1.0d 0.0d 
4      OTF Source3 21.738d 88.205d 0.7d 0.0d GAL GAL LAT CEN DEC 14.0 -GALOFFS      0.0d 1.0d 
 

Subscans #1 and #2 are totally equivalent, as they only differ in the decription: the first gives the start-stop 
boundaries of the subscan, while the second expresses the same in terms of center+span.  
Subscan #3 is a horizontal subscan (in particular it is ‘LAT’=constant elevation), executed across a sidereal 
position, in this case expressed with sexagesimal coordinates, with -1 degree of azimuth offset.  
Subscan #4 is performed in the Galactic frame, but with an offset of +1 degree in latitude. Notice that the 
subscan direction is ‘DEC’, so the subscan will be performed ‘backwards’, i.e. with longitude decreasing 
along the execution. 
 
 
3.2.3 OTFC subscans 
These OTF acquisitions are performed using an externally-defined target position.   
The target is recovered from a separate subscan, whose ID is specified among the OTFC parameters: 

 
ID = subscan unique ID  
TYPE =  subscan type, in this case ‘OTFC’  
TARGET_ID = ID of the subscan where the target position is defined 
SPAN =  span of the subscan (degrees) 
FRAME = target coordinate frame (‘EQ’ or ‘GAL’)  
sFRAME = coordinate frame along which the scan is performed (‘EQ’, ‘HOR’ or ‘GAL’) 
 
 
GEOM = scan geometry:  

LON = constant longitude 
LAT = constant latitude  

DIR = scan direction:  
INC = the varying coordinate increases  
DEC = the varying coordinate decreases 

DURATION = scan actual duration in seconds (acceleration/deceleration ramps excluded) 
 

Example of usage of OTFC subscans: 
 

1 SIDEREAL 3c147 
2 SIDEREAL  MySource  EQ  12:00:00h  30:00:00    2000.0    
3 OTFC 1 1.0d EQ EQ LAT INC 14.0 
4 OTFC 1 1.0d EQ EQ LON INC 14.0 
5 OTFC 2 2.0d GAL GAL LAT INC 28.0 
6 OTFC 2 2.0d GAL GAL LON INC 28.0 
 

Subscans #1 and #2 are simple SIDEREAL subscans; notice that, as the first one invokes a target which is 
listed in the system catalogue (Appendix E), the target coordinates are not specified.  
Numbers #3 and #4 are OTFC subscans centered on the position inserted in subscan #1; they grab the EQ 
coordinates of 3c147 from the catalogue and respectively perform a Dec and a RA subscan across the 
source, each spanning 1 degree in 14 seconds.  
Subscans #5 and #6, instead, refer to the second SIDEREAL, the one devoted to ‘MySource’. The target 
coordinates in subscan #2 are given in the Equatorial frame, however  the OTFC calls them in the Galactic 
frame: in this case the target Equatorial coordinates are converted to Galactic coordinates and then passed 
to the OTF component of the system.  



 9 

à Notice: when a SIDEREAL subscan is used as a reference for an OTFC subscan, the offsets 
specified in the SIDEREAL one, if any, are ignored.  

The present usage of OTFC subscans looks convoluted: it is mainly conceived for observations of moving 
targets (with the employment of an ephemeris generator component, under development). 
 
 
3.2.4 SKYDIP subscans 
A skydip can be achieved by properly setting a normal OTF subscan in the HOR frame, but this requires 
the user to already fix the azimuth position at which the skydip must be performed.  
A more dynamical solution, described in the following paragraph, allows the observer to schedule a skydip 
in the nearbies of a given source.  
To achieve this, here is an example of the lines which must be inserted in the .LIS file:  
 

1  SIDEREAL  MySource  EQ   12:00:00h   30:00:00   2000.0   -HOROFFS   -1.0d   0.0d 
2  SKYDIP      1     20.0d    90.0d    300.0    -HOROFFS   -1.0d   0.0d 

 
The first line is a normal SIDEREAL subscan, pointing to an offset position w.r.t. a certain source of given 
celestial coordinates.  
The second line is composed by:  

ID = subscan unique ID  
TYPE =  subscan type, in this case ‘SKYDIP’  
REFERENCE_SIDEREAL = subscan ID identifying the reference SIDEREAL position  

  START_EL = elevation of skydip starting point (degrees, 0-90), with “d” suffix 
 STOP_EL = elevation of skydip ending point (degrees, 0-90), with “d” suffix 
 DURATION = subscan duration (seconds) 
 offFRAME = use -HOROFFS only 
 LONOFF = longitude offset (degrees), with “d” suffix 
 LATOFF = latitude offset (degrees), with “d” suffix (usually 0.0d) 

 
The corresponding subscan definition in .SCD file would be: 
 

SC: 1 MySource Skydip STD:MANAGEMENT/FitsZilla 
1_1 0.0  1 NULL POSTTSYS 
1_2 300.0 2 NULL POST 

 
Where PROCEDURE_TSYS and POST are proper procedures written in the .CFG file (see next 
paragraph).  
The result of the combination of the two actions is: the telescope goes off of 1.0°  in azimuth with respect 
the target MySource, a tsys is measured. Then the current azimuth of the source (minus 1 degree) is used 
as the reference azimuth to perform the skydip, spanning beween 20° and 90° of elevation in 300 seconds. 
 
 
 
 
 
 
  



 10 

3.3 CFG file 
 
This file lists the (optional) configuration parameters for the frontend frequency management and for the 
execution of some procedures that the users might want to run before or after a scan.  
The first field is the name of the procedure which is user-defined and must be unique in the file. Names are 
case sensitive. It is suggested to use all-caps names, so that any name clash with ESCS commands is 
impossible.  
The open bracket must lie on the same line of the procedure name. Between brackets the configuration 
commands must be provided one for each line. The .CFG file can contain as many procedures as needed.  
An example of a possible content of the .CFG file: 
 

INIT{ 
 setLO=5600 
 device=0 
} 
 
LOW_FREQ{ 
 setLO=5650 
 device=0 
} 
 
HI_FREQ{ 
 setLO=5700 
 device=0 
} 
 
POST{ 

getTpi  
} 

 
POSTTSYS{ 

wait=1.000  
tsys 

} 
 

PROC_WAIT(1){ 
 wait=$0 
} 
 

Observers might create a procedure like INIT (again, the name is user-defined), conceived to be called only 
once, when the schedule is loaded. One useful command to be inserted inside this call is the “setLO” one, 
to specify the local oscillator frequency value (MHz): this frequency setup can be manually performed 
during the overall system setup phase, but it also can be changed for each schedule inserting this 
command in the initialization procedure, or even at subscan level as shown in procedures LOW_FREQ and 
HI_FREQ to be used in the pre-scan phase. For spectroscopy, do NOT use the “setLO” command, as 
the local oscillator frequency is computed by the system in order to properly observe the wanted 
line, whose actual sky frequency depends on date and time.  
 
The next procedures shown above are meant to be called before or after the execution of the actual 
subscan, and can be named as the user prefers: remember that their name must be correspondingly called 
inside the .SCD file (see dedicated section).  
In the above example, if the procedure POSTTSYS is called after a certain subscan, a Tsys will be 
measured 1 second after the antenna has closed the subscan acquisition and before the next subscan is 
commanded. Please notice that these commands are NOT time-based: they will be executed sequentially.     
 
Users can define procedures accepting one or more arguments, to be passed when the procedures are 
called. One example is the WAIT procedure: after its name, the number in () brackets specifies how many 
arguments it has. Inside this procedure, there is only a wait command, where the “$0” is a reference for the 
value that will be passed at runtime.  
 
Ideally, any ESCS command can be inserted into these procedures. This does NOT mean it should be 
done, as many of them have no useful role within a schedule – on the contrary, their effects might be 
detrimental to the results. Users are warned that the execution of “creative” schedules might lead to 
unexpected or unwanted results.  



 11 

 
Commands can be temporized, i.e. a specific UT time can be associated to them, in order to command 
their execution in a given moment. This is accomplished appending a time indication in the form “@DOY-
HH:MM:SS”, for example:  
 tsys@124-13:44:23 
Again, this opportunity must be exploited cum grano salis.   
 
 
 
3.4 BCK file 
 
The content of this file is devoted to the backend configuration. As in the .CFG file, it lists the procedures to 
be called within the .SCD schedule.   
As the following example shows, each procedure must have a unique name and make reference to the 
selected backend (in this case: BACKENDS/TotalPower). The open bracket must line in the same line of 
the procedure name, then the backend-related commands must be inserted – one per line.  
 

STD:BACKENDS/TotalPower { 
 setSection=0,*,2000.0,*,*,0.000025,* 
 setSection=1,*,2000.0,*,*,0.000025,* 
 integration=40 
 enable=1;1 
} 
 
300_40:BACKENDS/TotalPower { 
 setSection=0,*,300.0,*,*,0.000025,* 
 setSection=1,*,300.0,*,*,0.000025,* 
 integration=40 
 enable=1;1 
} 
 
730_20:BACKENDS/TotalPower { 
 setSection=0,*,730.0,*,*,0.00005,* 
 setSection=1,*,730.0,*,*,0.00005,* 
 integration=20 
 enable=1;1 
} 

 
 
Notice the ‘enable’ command, which positionally specifies the sections that are meant to be acquiring data 
(0 equals to ‘off’, 1 to ‘on’). If, for example, only the feeds 0 and 5 of the MF receiver are required to 
observe, the command for the TPB would be:    enable=1,1,0,0,0,0,0,0,1,1,0,0  
It is important to give the integration command after the setSection one, when the integration value differs 
from the sampling time commanded by setSection.  
 
 
  



 12 

3.5 Spectral line observations 
 
When spectroscopy is concerned, the relevant source parameters can be specified, for any subscan 
type, by adding the following optional elements to the needed .LIS file line:  
 

RVEL LABEL = [opt] in case the source radial velocity needs to be specified, the ‘-RVEL’ key  
                          must be written, followed by a three-value argument  
RADIAL VELOCITY = [opt] km/s, unless the VELOCITY DEFINITION keyword is set to ‘Z’  
                                    (in that case it is a dimensionless quantity) 
VELOCITY FRAME = [opt] frame for the radial velocity. Options: BARY, LSRK, LSRD, LGRP, 
                                   GALCEN, TOPOCEN  
VELOCITY DEFINITION = [opt] radial velocity definition. Options: RD (Radio), OP (Optical),  
                                           Z (Redhsift) 

 
Example of LIS line: 
 
1 SIDEREAL MySource GAL 200.3232d 45.1221d -GALOFFS  0.0d 0.0d -RVEL 112.223 LSRK RAD 

 
 

The observed line rest frequency, instead, can be specified in the INIT or PRESCAN procedures inside 
the .CFG file, using the following command:  
 
          restFrequency=[freq1];…;[freqN]   
 
where values must be expressed in MHz. Providing only one frequency value means that all the N sections 
available for the receiver in use will be set to the same frequency, otherwise it is compulsory to specify all 
the N values.  
 
In order to let the system compute the observed frequency to be centered in the band(s) at runtime, thus 
taking into account the proper Doppler effects, a specific command must be inserted in the PRESCAN 
procedures of the .CFG file, after having provided the line rest frequency in the same procedure or in the 
general INIT one: 
 

fTrack=[dev]  
 
where [dev] is the device in charge of performing the frequency tuning: 
 

• LO: only the front-end local oscillator is moved 
   

• ALL: first of all the front-end local oscillator is tuned, then the back-end - if it allows such a sub-
tuning - also performs a further frequency adjustment, in order to centre the line(s) in the various 
sections. This option is useful in case multiple rest frequencies are to be observed, yet a complete 
success cannot be guaranteed as the dopplered frequencies  might turn out to be incompatible 
with the section bandwidths and the LO ranges. In case at least one line lies outside the RF band 
of the receiver or the back-end input bandwidth, an error rises.  

 
Example of .CFG procedures:  
 

INIT_SPECTRAL{ 
 restFrequency=5678.9992 
} 
 
PRESCAN_SPECTRAL{ 
 fTrack=ALL 
 device=0 
} 


